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DYNAMIC CONTACT STRESSES PRODUCED BY THE
IMPACT OF AN AXISYMMETRICAL PROJECTILE
ON AN ELASTIC HALF-SPACE
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Department of Engineering Mechanics and Engineering Research Institute.
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Abstract—The dynamic contact stresses between an axisvmmetric projectile and an elastic half-space are obtained
by solving three-dimensional equations of motion. These stresses are written as the sums of the Hertz contact
stresses and wave-effect integrals. In terms of the contact radius. the Hertz theory is shown to be a good approxima-
tion in determining total applied force. However, for calculating the maximum radial surface stress at the maximum
contact radius, the Hertz theory applies only when the contact time is longer than approximately 40 usec. The
discrepancy between the Hertz radial stress and the corresponding value obtained here is greater at the initial
stage of impact than at the middle of the contact time.

1. INTRODUCTION

WHEN a solid body impinges on the smooth surface of a material, both the size of the contact
region and the values of the stresses around the region vary with respect to time. Trying to
account for the moving boundary conditions and the inertial effect of material particles
would appear to make a rigorous solution of the problem difficult. However, an approxi-
mate solution was obtained by Hertz when he assumed that the stresses and strains near the
contact region may be computed as though the contact was static [1]. The solution is
considered valid for moderate impact velocities.

In an earlier work [2], the fractures produced in glass blocks by the impact of steel balis
were studied by observing the fracture stress waves and varying the impact velocity. At
highest velocities of impact, the recorded stress waves showed that fractures occurred only
a few microseconds after the glass blocks were first compressed. At the instant of fracture,
the rate of increase in dynamic loading and the contact area was large, phenomena which
raise questions about the validity of the Hertz impact theory for determining stresses at
that state of loading.

Tsai [3] recently studied the contact stress distribution in an elastic plate of finite thick-
ness subjected to the indentations of spherical indenters on the upper and lower surfaces
of the plate. The ratio of the maximum tensile stress in the plate to the corresponding half-
space value was shown to approach unity for thick plates, but to increase with decreasing
plate thickness. This magnification of the maximum tensile stress in thin plates was demon-
strated experimentally [4]. In considering the associated dynamic problems, questions
again arise about the conditions under which the results obtained by Tsai can be extended
to the dynamic case as Hertz did in his impact theory.

In the work described here, the dynamic contact stresses between an axisymmetric
projectile and an elastic half-space are studied by solving the three-dimensional equations
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of motion. These stresses are written as the sum of the Hertz contact stresses and the
effect of stress waves. To study the validity of the conventional impact theory. the stresses
determined here are compared with those predicted by the Hertz theory in terms of contact
time and contact radius.

2. DYNAMIC CONTACT STRESS

Consider an elastic half-space subjected to the impact of a rigid, axisymmetric pro-
jectile. Assume that during impact the axis of symmetry of the projectile is perpendicular
to the free surface. The problem is now axisymmetric, and the response of a half-space to
dynamic surface loadings can be studied by Hankel transforms [2, 5, 6]. For the problem
considered here, it is assumed that the shear stress vanishes on the free surface and that
during impact the normal contact stress between the projectile and the half-space, p(r. 1),
is a function of radial distance r and time t. In fact, p(r, t) can be determined as the solution
to an integral equation. During impact, the contact area between the projectile and the
half-space a{t) generally varies with time. Thus the problem has moving boundary condi-
tions with a finite loading area. To solve the problem, Hankel transforms are first applied
over r, and Laplace transforms are operated over t. From the results obtained by Tsai [5],
it can be induced that on the free surface, z = 0, the Laplace transform of the vertical dis-
placement is
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The Laplace inversion of (1) can be obtained by considering F*(s. p) as the transform of
S{s.t). To obtain the inversion of (3}, let p = s¢,{ and cut the complex {-plane as shown in
Fig. 1. The inversion of (3} is
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Around the origin { = 0, (7) has the expansion
v 1 2 3
gl) = EC +0(0°). (8)

Therefore, the integrand of (5) has a simple pole at { = 0. In addition g({) has poles at
{ = +i(l/y) which give the Rayleigh wave speed. The value of y depends on Poisson’s
ratio v. Integration of (5) along the contour in Fig. 1 gives

fls, 1) = ¢,[(1—v)H(t)+ L cos(c,nst)], 9)

where H(t) is the Heaveside function, and the operator is
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and
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The first term in (9) 1s the contribution of the pole at { = 0. In (10) the first term s the
contribution of the poles at { = +i(1/;); the other terms result from the branch cuts. The
expression and intervals of integration in (10) are similar 1o those obtained in Refs. 75, 7.8’
for vertical displacements. If equation (1) is divided by k. the inversion of that gives
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Equation (12) is now suitable for determining the dynamic contact stress p(r, 1. To find
p(r.t), assume the vertical displacement produced by the projectile inside the contact area
can be described by g(r. 1), i.e. u_(r. t) = glr.t) for r < altyat = = 0. For projectiles of simple
geometry, g(r.:) can generally be determined. Equation (12} now becomes an integral
equation with the unknown pir, r). When inverting (12), the orders of integration or differen-
tiation are important in order to avoird unmanageable singularities. Applying some integral
identities [3. 9. 10] to (12) gives
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On the right side of (13). the first integral is similar to the corresponding term obtained in
the static case while the second integral. i.e. (14), is due to wave effects which obviously do
not occur in static problems. The domain of influence of stress waves which is the integra-
tion region of (14) is shown by the hatched portion in Fig. 2. The hatched area applies to
the first term in (14) while the second term is integrated only over the cross-hatched region.
For future convenience. the dot and prime will indicate differentiations with respect to
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time and space respectively. The following wave functions are defined :
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Integrating over the hatched region in Fig. 2 and assuming the normal stress vanishes on
the boundary of the contact area, i.e. p[a(t), t] = 0, (14) gives
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To invert (13), the following integration by parts on (16) is required :
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Equation (20) can be used to determine the normal contact stress p(r, 1) while (21) relates
the distance of approach g(0, t) to the radius of the contact region afz). The terms involving
W&, 1) in (20) and (21) represent stress wave effects. If these terms are dropped, (20) and (21)
reduce to the corresponding static equations. By integration by parts over z, differentiation
with respect to r and finally changing the orders of integration, {16} can be simplified as

qW t ot a(t)
wirn L{ f G pli. 1) i de

A
ct t~rh ¥ r—br—1)

1~rb matry
+ [ J Gapla, 114 dA dr
v Br-ty—r

ot air)
+ '{ Gipla. vy da dr} . {223

Yy Y bty



Dynamic contact stresses produced by the impact of an axisymmetrical projectile 549

where
0 = r—a(“[:”. (23)
I, = [_a(lzh)»r' (24)

Equations (20) and (21) are sufficient to solve the static contact problem [3. 9]. However,
for the dynamic problem considered here, an additional equation relating projectile mass to
reaction of the half-space’is required. Thus from Newton's law

a(t)
mg0,t) = ~P(t) = —2n _)r p(r. tyr dr. (25)
0

The system of the three integral-differential equations (20), (21) and (25) 1s now sufficient to
determine the dynamic unknowns p(r, t), a(t) and g(0. t). The problem is well defined. How-
ever, the solution for a particular problem depends on the function g(r,t), which is
associated with the shape of a projectile.

The solution for the impact of a spherical body with radius R or a projectile with
round end of radius R will now be discussed in detail. For these projectiles, the shape of
penetration can be written as [3, 9]

2

r
)= ——=H(1),
glr.1) = aft)— 2 H®) (26)
where g(0. t) = afz) is the distance of approach occurring at the center of the contact region.
The three coupled equations (20), (21) and (25) will now be-studied by successive approxima-
tions. Substituting (26) into (20) and (21) and dropping the wave-effect functions, the first
approximation solutions are

4u

p(r.1) = —m[a(t)z-"z]% (27)
and
a(t)?

Although a and « are functions of time, (27) and (28) are precisely the results obtained in
static half-space contact problems [3, 9]. Integrating (27) over r gives the total force

8

PO = 3R

a(t)3. (29)

In terms of (26) and (29), equation (25) can be integrated to obtain the relationship between
a and t. It was shown [11, 12] that «(t) can be approximated by oft) = 0-995a, sin(nt/T),
where a, is the maximum distance of approach and T is the duration of contact. In terms
of «(t) and (28), the radius of contact is

a(t) = (0:995)a, sin%(irf), (30)
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where the maximum radius of contact in terms of the impact velocity iy

i < 15(1—vim .
T T T &Y

Equations (27)+31) are predicted in the Hertz theory [1].
To find the second approximation for p(r. t), (27) is substituted into (20) and (22). All the
integrations over 4 in (22) result in 7/2. Therefore. {20) and (22) give
4

plr.t) = "m{f_d‘(l)—r']:

1 feO altaie) ates)aie,) L -
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Without solving (32) explicitly, some general results can be obtained. The quantities in the
second bracket of (32) which are defined in (23) and (24) depend on wave speeds and the
value and rate of increase of the contact area. The values of a(r) and 4(f) are functions of
R and T which in turn depend on V. The larger the impact velocity V. the shorter the
contact time T. For moderate impact velocity. T is large and the time needed for waves to
traverse the contact area is very short compared to T. For this case, it can be seen from
Fig. 2 that the values for ¢, r, and t, are very near each other. Therefore, the value inside
the second bracket of (32) must be quite small. Hence. the dynamic contact stress p(r. t) in
(32) can be approximated by the first term which is precisely the value used in the Hertz
theory of impact [1].
The total impact force can be determined by integrating (32) over r. Thus,

~alt)

I

P(1)

2 ptr. t)yr dr

v 0
B 8/1 'aj L mair) d([1)d(t1) a([:)d“:) :d:?‘ 33
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Equations {32) and (33) require the determinations of «{r,) and a(t,). These values are
determined if the Rayleigh wave front exceeds the contact circle. For extremely small r.
the normal stress and total force can be obtained from (1) for large values of p. Indeed.
{1) can be written for large p as

l LAV
UXr.pl = —— '~J sp*Jo(sr) ds.
peyp Iy

The inversion is

r- |-
‘X”)“ﬁH‘[): -/;
2 ¢ Jo
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0
For small t. «(1) is equal to V1. Differentiating the above equation with respect to ¢ gives
pir.ty = —pc, Vforr < atyand t > 0.
Integrating over the area of contact gives

P() = —pe, VA
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where the contact area A = na®. The above simple expression is the same as that obtained
by Thompson and Robinson [16].

3. RADIAL SURFACE STRESS

The tensile radial surface stress, which is the critical stress in the study of fractures in
Ref. [2], can also be calculated from the solutions for three-dimensional equations of motion.
From the results obtained by Tsai [S], the Laplace transform of the vertical and radial
displacements can be written as

X« Bk 22 1 92 ~az _ .2 a- Bz
U* = _lj prsaf(ks +2s%) e 252 e #=1J (sr) ds )
’ o (k3 +2s%)* —4s?af
and
1 = p*s?[(k2 2\ a—az _ -z
U = —-f sl 2+252)e - 20‘526 1 (sr) ds )
Mo (k3 +25%) —4s%af

where o = (s +k3)* and f = (s? +k3)*.
In terms of the above displacements, the transform of the radial stress on the free surface
can be written as
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Op = zfo (k§+252)2—452a5 SJO(sr) ds
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k,(2s* +k2)

F= ety Zaup

(37)

The above F can be considered as a transform function, and its inversion can be obtained
by integrating along the contour shown in Fig. 1. Similar to (9). the result is

d+ix
fls. 1) = 7—1— F(s.p)e” dp = ¢,[2(1 = v)H(1)+ L cos(sht)], (38)
LTV 5~ix

where the operator is
_ 22—-1/y2 2t
L cos(sht) = A2-157) cos(ig‘—)
g(»)
8 f *(n? = 1}(1—n?/k?)n(2 — n*) cos(sc,nt)
Tn), Q=+ 16(nE - 1)1 ~-n*kY)

Ay
/

(39)




552 Y. M. Tsai

Dividing equation (36) by k, and using (38), the inversion of (36) is

‘ g, dr. ) dt =J f pis. tisJolsri ds

Jo oo
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Applying Abel’s transform to (42) gives
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If Abel's transform and its inversion are successively carried out over {40), it becomes
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Then
J‘ Smf(t, m)dm
(r? —52)* 6é (r*—m?)?

If the operations on the left side of (47) are applied to (45) which is then differentiated with
respect to time. the result is

L)
E réf(e, r). 47)

10 W
oty = plr0=(1=20% [ nidi-T. (48)
[1]

where

w1 ("xI(,x)dx I 1 GJ"xI(t,x)dx

e 49

arlly (PP=x)t 1—varor
The first two terms on the right side of (48) are predicted in the Hertz impact theory. The
third term, which is new here, is due to wave effects.
The region of integration for the first term of (44) is outside the hatched area in Fig. 2
that for the second term of (44) is outside the cross-hatched area. If the following wave func-
tions are introduced

_ 1
G, =
VU [x=b(r—1))2 -4
- 1
G, =
P -1 — x4 F (50)
1
Gy = {[b(t—r)-&-x]z—lz}*'
(44) can be written
_ t x—b(t—1)
Iit,r) = L{J‘ f G,p(A, 1)AdAdt
t—x/bv Q
1=x/b pblt—1t)—x _ t; pa(r) _
- f j G,p(A, 1)Adidr— J. f G,p(A, 1)AdAdt
t [1] 4] 1]
t AbI—D+x _ t2 pa(t) _ .
+ J. f Gyp(4, 1A dAdT+ f j G;yp(A, 1)AdA dr}. (51)
12v0 0 (o]

This equation is suitable for numerical integration ; integration of (48) will be discussed in
the next section.

4. NUMERICAL INTEGRATIONS AND RESULTS

Both the normal contact stress p(r, t) and the surface radial stress o,,(r, t) are written
in (32) and (48) respectively as the sums of the corresponding quantities predicted by the
Hertz theory and wave-effect integrals. The integrands of these integrals involve singularities
in either the upper or lower limits of integration. The difficulties of dealing with singular
integrands can be overcome by using the methods of product-integration [13, 14]. Using
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n
()
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this technique. two four-point integration formulae needed in equations (30) and (31) are
developed in Appendix A. Formula I is used in (32) while Formula I ts used in (48). For
integrations not involving singularities, common three-point or four-point methods are
used. The differentiations in (48) and (49) are performed by the Lagrange method {5%
Five points are calculated for each differentiation, and the point of differentiation needed
is an interior point of the interval over which the results are smooth.

The value of the surface radial stress 7, [a(t). 1] along the circle of contact is calculated
for various values of maximum contact radius « and contact time 7. as shown in Figs. 2
(a and b). The curves show the ratio between the radial stress o, [a(t). ] obtained here by
considering the wave effect and the corresponding value predicted by the Hertz theory.
which is the sum of the first two terms n (48). Figure 3(a) shows the ratio at | usec after
projectiles first press the material ; Fig. 3(b) shows the ratio during the middle of the impact.
t = T72. At t = 1 usec the ratio increases rapidly with increasing «, and decreasing T, as
shown in Fig. 3(a). Att = T.2, however. the curves in Fig. 3(b) show that the ratio decreases
if a, increases and T decreases. For relatively small ¢, and large T. both curves approach
unity where the Hertz theory applies.

The value of the dynamic normal contact stress ptr. t) can be calculated from (32) for all
values of r inside the contact circle except for the point r = 0. By choosing a value of »
sufficiently close to zero and other values of r less than a(z), the shape of p(r. 1) is determined
by a computer. The integration of p(r, t) in (33) gives the value of the total dynamic force
P(1). The values of the ratio between P(r) predicted here and the corresponding value ob-
tained in the Hertz theory are calculated for various values of ¢, and T. The results tabulated
in Appendix B show there is only a very small difference between the present theoryv and

/

e T=IO.usecﬁ>,

T=25usec
- - T=40usec <
°L . T=200usec )

3
3
Maximum contact radws 07in

w

(a)

POk ;
s,;- / T -

& b; T=200usec — / i i
| . |
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! T=25usec ———m—
Tk |
Fai0psoc ————] |
o6 i i e ] ] R
B . 3 5} a2 0 12

Maximum contact radius 10 “in

(b)

F1G. 3. Radial contact stresses a,,[a(t). t] normalized by the corresponding Hertz stresses o, fair). ¢
(a)r = lusec:ibyr =T 2.
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that of Hertz. A similar situation for p(r.t) is also indicated in the results obtained from
computations.

5. CONCLUSION

By using integral transforms to solve three-dimensional equations of motion and the
techniques used by Young and Linz 13, 14]. the normal contact stress and radial surface
stress caused by impact of an axisymmetric projectile on an elastic half-space can be written
as the sums of the corresponding Hertz contact stresses and wave-effect integrals. The singu-
lar integrands can be numerically integrated using the product-integration technique.
The contact stresses are calculated for various values of the contact time Tand the maximum
contact radius a, . The Hertz theory is a good approximation for determining the total force
produced by the projectile. However. in calculating the maximum radial surface stress when
the contact radius is maximum, the Hertz theory applies only for moderate impact velocities
where the contact time is more than approximately 40 usec.

The discrepancy between the Hertz radial stress and the corresponding value obtained
here increases with decreasing contact time and increasing contact radius. The dis-
crepancy is larger at 1 usec after the projectile first presses the material than at the middle of
the contact time.
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APPENDIX A

Product-integration formulae

Formula 1.

J‘af(i)¢(f‘ rdS = a flry)+2, f(ry+Ar)+a; f(ry +24r)

ng

Hy

H3

Hy

+o, f(ry+3Ar). (&, r) = ————1——~ Ar = (L‘:_r‘l
ot T (E2—rh) 3
2, 6 —~11 6 -1 “
% R T 1 I
6| S o -9 12 -3 s
14 0 2 —3 1 /,[4

1
E: ME, (E—r)dS =1, -1,

l a 4 I 9 - . 2
1) HENE-rde = L=dmlenily

Iy
2

(n, +(n?—n)*]

In {[nw(ni—né)l‘]}

2 I i
(n —ng) ~(nf—n3)?

1 nil
;["4(’12—”5)%—"1("? —n)? +-%]

e VA

2.2 24 2,2 20 20,2 204 2 2y
nyny —np)t —ni(ng —n5)t —35l(ny —ng)* —(ny —nj)*]
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Formula 11

f CFOH AE = 0y () + 03 Sy + AP+ 25 £y +247)

£ 1 (ra—ry)

+ay f(r +34r). #(r, &) = Ry Ar = -2 3 !
[ 6 —11 6 —1 "
% . 0 18 —15 3 i
A3 ¢ 0 -9 12 -3 Uy
e 0 2 -3 1 Ha

N = r/Ar. ny = r/Ar. Ny = r,/Ar.
1y =j otr, )dE = 1,
1 [’ . .
pr= | B aE-r e = mnl,
1 ra
b= g | R DE= R 48 = L= 2n, 0yl
1 ra .
g = —A-r—a-f A, EOE~r)dé = 1,—3n1,+3n3,-n}l,
I, = sin“(n—l\‘;) - sin“(%)
I, = (N2=n}t —(N?*—n,)?

Iy = 3{[n (N> =n)t = ny(N> —np*]+ N?1,}
I, = 4[(n? +2N?)(N? — ) — (nd + 2N?)(N? — nd)*]

APPENDIX B

TABLE 1. VALUE OF DYNAMICALLY APPLIED FORCES P(f) NORMALIZED BY THE
CORRESPONDING HERTZ FORCE Py(1). 1.e. P(1)/ Py(t)

(in.)

0-02 0-04 0-06 0-08 010 012
!
T
(usec) tusec T/2 lusec T/2 lusec T/2 tusec T/2 lusec T/2 lusec T/2
10 1000 1000 1-000 1-003 1-000 1-007 0998 1.012 0995 1.018 0991 1.025
40 1000 1000 1.000 1000 1000 1.000 1000 1000 0999 1.001 0998 1.002
200 1000 1000 1-000 i-000 1.000 1-000 1000 1000 1.000 1-000 1.000 1-000

(Received 14 January 1970 ; revised 5 August 1970)
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AGCTpakT—Peluas TpexMEpPHbIe YPDABHEHHA ABUKEHHUA, MOTy4arOTCH IMHAMMYOCKHE KOHTAKTHbIE HAMp-
SUKEHHAMEKIY OCECHMMETPHUYECKUM CHAPARAOM M YOPYTHM MOIYNPOCTPAHCTBOM. ITH HANPsAKEHUR
3AMUCHIBAIOTCA B BHIE CYMMBl KOHTAKTHBIX HATpsxeHu#t [epua # HHTErpaloB BOJHOBOTO dpdexTa.
[Toka3ano, 4TO B BbIPAKEHMAX AJIA paadyca KOHTaKTa. 7eopus [epua SBAAETCH HALTCAKILUMM
npubaMAKEHHeM ANA ONpeaesICHUS TIOMHOH MPUIOKEHHOA CUabl. (DIHAKO I8 PACHETa MAKCHMAIBHOIO
PAaHAABHOrO MOBEPXHOCTHOIO HANpPSKEHHA, NMPH MAKCHMAIBHOM paddyce KOHTaKTa, Teopus [epua
PUMEHSETCS TO/LKO TOT3a. KOraa AMMTENbHOCTH KOHTAakTa Oonbuie dem npubiniznreasio 40 pcex.
PacxoxaeHue MEXAy PaauKibHbIM HAMpskeHuem [epua ¥ COOTBETCTBYIOLUMM 3IHAYEHHEM. MO.1YYEHHbIM
B nanHoi paboTte, oka3lbiBaeTcs GOMBLIMM B HAYAABHOM CTAAMH VIAPA. YEM B CEPEIMHHOM BPEMEHH

KOHTAKTA.



